Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38592879

RESUMO

Plants must adapt to the complex effects of several stressors brought on by global warming, which may result in interaction and superposition effects between diverse stressors. Few reports are available on how drought stress affects Xanthomonas albilineans (Xa) infection in sugarcane (Saccharum spp. hybrids). Drought and leaf scald resistance were identified on 16 sugarcane cultivars using Xa inoculation and soil drought treatments, respectively. Subsequently, four cultivars contrasting to drought and leaf scald resistance were used to explore the mechanisms of drought affecting Xa-sugarcane interaction. Drought stress significantly increased the occurrence of leaf scald and Xa populations in susceptible cultivars but had no obvious effect on resistant cultivars. The ROS bursting and scavenging system was significantly activated in sugarcane in the process of Xa infection, particularly in the resistant cultivars. Compared with Xa infection alone, defense response via the ROS generating and scavenging system was obviously weakened in sugarcane (especially in susceptible cultivars) under Xa infection plus drought stress. Collectively, ROS might play a crucial role involving sugarcane defense against combined effects of Xa infection and drought stress.

2.
Contraception ; : 110439, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552820

RESUMO

OBJECTIVE: The majority of intrauterine devices (IUDs) inserted in China are tailless, requiring intrauterine manipulations for removal and causing pain. This study aimed to investigate the analgesic efficacy of lidocaine injection into a novel disposable injectable cervical dilator for IUD removal procedures. STUDY DESIGN: A double-blinded, placebo-controlled, randomized clinical trial was conducted with women aged 18-65 years old requesting outpatient IUD removal. The study randomly assigned participants to either lidocaine (injecting 5 ml of 2% lidocaine into the injectable cervical dilator) or placebo (injecting 5 ml of normal saline into the device) group. All participants received a standardized paracervical block. The primary outcome was pain reported during IUD removal on a 100 mm Visual Analog Scale (VAS). Intention-to-treat were conducted to evaluate the analgesic effectiveness of injecting lidocaine into the injectable cervical dilators. RESULTS: We enrolled seventy-four eligible participants (37 in lidocaine group and 37 in placebo group). The results showed that the median intraoperative VAS score in the lidocaine group was lower than the placebo group (30.0 mm [IQR 20.0-46.0, n = 37] vs 46.0 mm [IQR 30.0-55.0, n = 37], p = 0.01. In subgroup analyses, among participants with IUD removal and without uterine manipulation and additional procedures, there was no statistically significant disparity observed in intraoperative VAS scores between the lidocaine and placebo group (15.0 mm [IQR 10.0-27.5, n = 8] vs 20.0 mm [IQR 20.0-40.0, n = 6]), p = 0.28). Among participants with an IUD removal necessitating intrauterine manipulations and without additional procedures, showing lower intraoperative VAS scores in lidocaine group (25.0 mm [IQR 15.0-40.5, n = 17]) compared to placebo group (46.0 mm [IQR 38.5-50.0, n = 23]), p < 0.01. Among participants with additional procedures in addition to IUD removal, there was no statistically significant disparity observed in intraoperative VAS scores between the lidocaine and placebo group (41.0 mm [IQR 32.5-57.5, n = 12] vs 45.0 mm [IQR 22.5-69.0, n = 8]), p = 0.97). CONCLUSIONS: Injecting lidocaine into the novel disposable injectable cervical dilator for cervix dilation can significantly reduce pain during an IUD removal, particularly in patients necessitating intrauterine manipulations during IUD removal. IMPLICATIONS: When we have to perform intrauterine manipulations to remove an IUD, surgical pain and narrow cervical canal undoubtedly affect the implementation of the procedure. Injecting lidocaine into the injectable cervical dilator can achieve local anesthesia while dilating the cervix, and might reduce the choice of general anesthesia for IUD removal.

3.
ACS Appl Mater Interfaces ; 16(7): 8939-8948, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334369

RESUMO

Transition metal metaphosphates and noble metal phosphides prepared under similar conditions are potential hybrid catalysts for electrocatalytic water splitting, which is of great significance for H2 production. Herein, the structure and electrocatalytic activity of different noble metal species (i.e., Rh, Pd, Ir) on CoNiP4O12 nanoarrays have been systematically studied. Due to the different formation energies of noble metal phosphides, the phosphides of Rh (RhPx) and Pd (PdPx) as well as the noble metal Ir are obtained under the same phosphorylation conditions perspectively. RhPx/CoNiP4O12 and PdPx/CoNiP4O12 exhibit much better HER activity than Ir/CoNiP4O12 due to the advantages of phosphides. Density functional theory (DFT) calculations reveal that the extraordinary activity of RhPx/CoNiP4O12 originated from the strong affinity to H2O and optimal adsorption for H*. The best RhPx/CoNiP4O12 only requires a low overpotential of 30 and 234 mV to deliver 10 mA cm-2 for HER and OER, respectively, and therefore is effective for overall water splitting (requiring 1.57 V to achieve a current density of 10 mA cm-2). This work not only develops a novel RhPx/CoNiP4O12 electrocatalyst for overall water splitting but also provides deep insight into the formation mechanism of noble metal phosphides.

4.
ACS Omega ; 9(6): 6036-6058, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371753

RESUMO

Selective catalytic reduction denitration technology, abbreviated as SCR, is essential for the removal of nitrogen oxide from the flue gas of coal-fired power stations and has been widely used. Due to the strong demand for energy and the requirements for environmental protection, a large amount of SCR catalyst waste is produced. The spent SCR catalyst contains high-grade valuable metals, and proper disposal or treatment of the SCR catalyst can protect the environment and realize resource recycling. This review focuses on the two main routes of regeneration and recycling of spent vanadium-titanium SCR catalysts that are currently most widely commercially used and summarizes in detail the technologies of recycling, high-efficiency recycling, and recycling of valuable components of spent vanadium-titanium SCR catalysts. This review also discusses in depth the future development direction of recycling spent vanadium-titanium SCR catalysts. It provides a reference for promoting recycling, which is crucial for resource recovery and green and low-carbon development.

5.
Plants (Basel) ; 12(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653854

RESUMO

Leaf scald caused by Xanthomonas albilineans (Xa) is a major bacterial disease in sugarcane that represents a threat to the global sugar industry. Little is known about the population structure and genetic evolution of this pathogen. In this study, 39 Xa strains were collected from 6 provinces in China. Of these strains, 15 and 24 were isolated from Saccharum spp. hybrid and S. officinarum plants, respectively. Based on multilocus sequence analysis (MLSA), with five housekeeping genes, these strains were clustered into two distinct phylogenetic groups (I and II). Group I included 26 strains from 2 host plants, Saccharum spp. hybrid and S. officinarum collected from 6 provinces, while Group II consisted of 13 strains from S. officinarum plants in the Zhejiang province. Among the 39 Xa strains, nucleotide sequence identities from 5 housekeeping genes were: ABC (99.6-100%), gyrB (99.3-100%), rpoD (98.4-100%), atpD (97.0-100%), and glnA (97.6-100%). These strains were clustered into six groups (A-F), based on the rep-PCR fingerprinting, using primers for ERIC2, BOX A1R, and (GTG)5. UPGMA and PCoA analyses revealed that group A had the most strains (24), followed by group C with 11 strains, while there was 1 strain each in groups B and D-F. Neutral tests showed that the Xa population in S. officinarum had a trend toward population expansion. Selection pressure analysis showed purification selection on five concatenated housekeeping genes from all tested strains. Significant genetic differentiation and infrequent gene flow were found between two Xa populations hosted in Saccharum spp. hybrids and S. officinarum. Altogether, these results provide evidence of obvious genetic divergence and population structures among Xa strains from China.

6.
J Sci Food Agric ; 103(15): 7517-7528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37440710

RESUMO

BACKGROUND: Lipid droplets (LDs) are important multifunctional organelles responsible for lipid metabolism of postmortem muscle. However, the dynamics in their building blocks (cores and layers) and phosphorylation of lipid droplet-related proteins (LDRPs) regulating meat lipolysis remain unknown at salt-stimulated conditions. RESULTS: LDRPs extracted from cured porcine biceps femoris (1% and 3% salt) were subjected to label-free quantitative phosphoproteomic analysis and LDs morphological validation. Results indicated that 3% salt curing significantly decreased triglyceride (TG) content with increase in glycerol and decrease in LDs fluorescence compared to 1% salt curing. Comparative phosphoproteomics showed that there were significant changes in phosphorylation at 386 sites on 174 LDRPs between assayed groups (P < 0.05). These differential proteins were mainly involved in lipid and carbohydrate metabolism. Curing of 3% salt induced more site-specific phosphorylation of perilipin 1 (PLIN1, at Ser81) and adipose triglyceride lipase (ATGL, at Ser399) than 1%, whereas the phosphorylation (at Ser600) of hormone-sensitive lipase (HSL) was up-regulated. Ultrastructure imaging showed that LDs were mostly associated with mitochondria, and the average diameter of LDs decreased from 2.34 µm (1% salt) to 1.73 µm (3% salt). CONCLUSION: Phosphoproteomics unraveled salt-stimulated LDRPs phosphorylation of cured porcine meat provoked intensified lipolysis. Curing of 3% salt allowed an enhanced lipolysis than 1% by up-regulating the phosphorylation sites of LDRPs and recruited lipases. The visible splitting of LDs, together with sarcoplasmic disorganization, supported the lipolysis robustness following 3% salt curing. The finding provides optimization ideas for high-quality production of cured meat products. © 2023 Society of Chemical Industry.


Assuntos
Músculos Isquiossurais , Metabolismo dos Lipídeos , Animais , Suínos , Gotículas Lipídicas/metabolismo , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Lipólise , Cloreto de Sódio/metabolismo , Biologia Computacional
7.
Front Microbiol ; 14: 1156413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970674

RESUMO

Introduction: Microbial inoculants can reinvent the value and edible security of cultured sausages. Various studies have demonstrated that starter cultures made up of Lactic acid bacteria (LAB) and Staphylococcus xylosus (known as L-S) isolated from traditional fermented foods were used in fermented sausage manufacturing. Methods: This study evaluated the impact of the mixed inoculation cultures on limiting biogenic amines, nitrite depletion, N-nitrosamine reduction, and quality metrics. Inoculation of sausages with the commercial starter culture (SBM-52) was evaluated for comparison. Results and discussion: Results showed that the L-S strains could rapidly decrease the water activity (Aw) and pH of fermented sausages. The ability of the L-S strains to delay lipid oxidation was equivalent to the SBM-52 strains. The non-protein nitrogen (NPN) contents of L-S-inoculated sausages (0.31%) were higher than that of SBM-52-inoculated sausages (0.28%). After the ripening process, the nitrite residues in the L-S sausages were 1.47 mg/kg lower than in the SBM-52 sausages. Compared to the SBM-52 sausages, there was a 4.88 mg/kg reduction in the biogenic amines' concentrations in L-S sausage, especially for histamine and phenylethylamine concentrations. The N-nitrosamine accumulations of the L-S sausages (3.40 ug/kg) were lower than that of the SBM-52 sausages (3.70 ug/kg), and the NDPhA accumulations of the L-S sausages were 0.64 ug/kg lower than that of the SBM-52 sausages. Due to their significant contributions to nitrite depletion, biogenic amine reduction, and N-nitrosamine depletion in fermented sausages, the L-S strains have the potential to serve as an initial inoculant in the process of manufacturing fermented sausages.

8.
Front Plant Sci ; 14: 1127928, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814761

RESUMO

Sugarcane (Saccharum spp.) is an important cash crop for production of sugar and bioethanol. Red stripe caused by Acidovorax avenae subsp. avenae (Aaa) is a disease that occurs in numerous sugarcane-growing regions worldwide. In this study, 17 strains of Aaa were isolated from 13 symptomatic leaf samples in China. Nine of these strains produced white-cream colonies on nutrient agar medium while the other eight produced yellow colonies. In pairwise sequence comparisons of the 16S-23S rRNA internally transcribed spacer (ITS), the 17 strains had 98.4-100% nucleotide identity among each other and 98.2-99.5% identity with the reference strain of Aaa (ATCC 19860). Three RFLP patterns based on this ITS sequence were also found among the strains of Aaa obtained in this study. Multilocus sequence typing (MLST) based on five housekeeping genes (ugpB, pilT, lepA, trpB, and gltA) revealed that the strains of Aaa from sugarcane in China and a strain of Aaa (30179) isolated from sorghum in Brazil formed a unique evolutionary subclade. Twenty-four additional strains of Aaa from sugarcane in Argentina and from other crops worldwide were distributed in two other and separate subclades, suggesting that strains of A. avenae from sugarcane are clonal populations with local specificities. Two strains of Aaa from China (CNGX08 forming white-cream colored colonies and CNGD05 forming yellow colonies) induced severe symptoms of red stripe in sugarcane varieties LC07-150 and ZZ8 but differed based on disease incidence in two separate inoculation experiments. Infected plants also exhibited increased salicylic acid (SA) content and transcript expression of gene PR-1, indicating that the SA-mediated signal pathway is involved in the response to infection by Aaa. Consequently, red stripe of sugarcane in China is caused by genetically different strains of Aaa and at least two morphological variants. The impact of these independent variations on epidemics of red stripe remains to be investigated.

9.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364065

RESUMO

In this study, self-made cat food attractant was prepared by Maillard reaction using hydrolysate of grass carp waste as raw material and glucose and cysteine hydrochloride as substrate. Its volatile compounds, antioxidant capacity, and pet palatability were investigated. The volatile compounds of attractants were analyzed using gas chromatography-mass spectrometry (GC-MS) which showed that alcohols and aldehydes were the most volatile in self-made attractants, accounting for 34.29% and 33.52%, respectively. Furthermore, Maillard reaction could significantly increase the antioxidant activity of self-made attractant, including scavenging activity on OH and DPPH free radicals as well as the chelating ability of Fe2+. The acceptance and palatability of two kinds of cat food were studied by adding 3% self-made or commercial attractants. The results of this study also found that both attractants could remarkably improve the intake rate of cat food. However, the self-made group was significantly less than the commercial group in first smell, first bite, and feeding rate, which might be because of the absence of umami ingredients and spices in self-made attractants.


Assuntos
Reação de Maillard , Compostos Orgânicos Voláteis , Gatos , Animais , Antioxidantes/química , Ração Animal/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Especiarias/análise , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/análise
10.
Polymers (Basel) ; 14(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36236190

RESUMO

Colorless polyimides (CPIs) with outstanding mechanical properties are essential materials in the production of flexible display panels, foldable windows, and even spacecraft cockpits. This paper specifically elaborates that the Morkit unit, and azo and nitro chromophores are important factors contributing to yellow PI, together with the well-known charge transfer complex (CTC) theory. Three diamine monomers, two anhydrides monomers, and three blockers were used to inhibit chromophores formation and, thus, obtain CPI films. The cut-off wavelength was blue-shifts to 334 nm and the transmittance is improved to 98.9% in the UV-vis range. Mechanical and thermal properties of the CPI films are not reduced through coupling effects of the blockers. Therefore, the inhibition method of the Morkit units and chromophore groups is a promising process for preparing CPIs to be used as flexible display materials.

11.
Front Plant Sci ; 13: 1014266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275567

RESUMO

Plant non-specific lipid transfer proteins (nsLTPs) are small basic proteins that play a significant regulatory role in a wide range of physiological processes. To date, no genome-wide survey and expression analysis of this gene family in sugarcane has been performed. In this study we identified the nsLTP gene family in Saccharum spontaneum and carried out expression profiling of nsLTPs in two sugarcane cultivars (Saccharum spp.) that have different resistance to leaf scald caused by Xanthomonas albilineans (Xa) infection. The effect of stress related to exogenous salicylic acid (SA) treatment was also examined. At a genome-wide level, S. spontaneum AP85-441 had 71 SsnsLTP genes including 66 alleles. Tandem (9 gene pairs) and segmental (36 gene pairs) duplication events contributed to SsnsLTP gene family expansion. Five SsnsLTP proteins were predicted to interact with five other proteins. Expression of ShnsLTPI.8/10/Gb.1 genes was significantly upregulated in LCP85-384 (resistant cultivar), but downregulated in ROC20 (susceptible cultivar), suggesting that these genes play a positive regulatory role in response of sugarcane to Xa infection. Conversely, ShnsLTPGa.4/Ge.3 appears to act as a negative regulator in response Xa infection. The majority (16/17) of tested genes were positively induced in LCP85-384 72 h after SA treatment. In both cultivars, but particularly in LCP85-384, ShnsLTPIV.3/VIII.1 genes were upregulated at all time-points, suggesting that the two genes might act as positive regulators under SA stress. Meanwhile, both cultivars showed downregulated ShnsLTPGb.1 gene expression, indicating its potential negative role in SA treatment responses. Notably, the ShnsLTPGb.1 gene had contrasting effects, with positive regulation of gene expression in response to Xa infection and negative regulation induced by SA stress. Together, our results provide valuable information for elucidating the function of ShnsLTP family members under two stressors and identified novel gene sources for development of sugarcane that are tolerant of environmental stimuli.

12.
J Food Sci ; 87(10): 4569-4579, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36065890

RESUMO

To overcome defects of polyvinyl alcohol (PVA) and expand its applications in food preservation, PVA/Ag@SiO2 nanocomposite films were prepared using the solution intercalation film-casting method. Transmission electron microscopy, X-ray diffraction, and UV-visible absorption spectra were applied to confirm the synthesis of the nanoparticles (NPs). Effects of Ag@SiO2 NPs on physicochemical characteristics of films like viscosity, swelling ratio, tensile strength, elongation at break, as well as antibacterial activity were also evaluated. Results indicate that Ag@SiO2 NPs could be synthesized successfully, and the increasing concentration of Ag@SiO2 NPs led to the decrease in viscosity and the swelling ratio of the PVA/Ag@SiO2 NPs nanocomposite films. PVA/Ag@SiO2 nanocomposite films exhibited increased tensile strength and strong antibacterial activity against Escherichia coli and Staphylococcus aureus. The films had higher antibacterial activity toward E. coli compared with S. aureus. Beef patties were applied to verify the practicality of PVA/Ag@SiO2 films. PVA/Ag@SiO2 NPs nanocomposite films act as an active food packaging system showing great potential in retaining food safety and prolonging the shelf-life of packaged foods. PRACTICAL APPLICATION: During the storage of fresh meat, the microbial count on the meat surface increased with increasing storage time; meat proteins could be broken down by microorganisms, causing the tissue structure to be destroyed, leading to loose muscle fibers and loss of nutrient-containing juices. In this paper, by improving the PVA film, a new antibacterial membrane was prepared, which can be used for fresh meat sold in supermarkets, as a lining at the bottom of the meat or directly covering the meat. The method can significantly decrease the number of microorganisms and extend the shelf-life of fresh meat.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Animais , Bovinos , Álcool de Polivinil/química , Staphylococcus aureus , Escherichia coli , Dióxido de Silício/química , Prata/farmacologia , Prata/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Carne
13.
Front Plant Sci ; 13: 1087525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589125

RESUMO

Leaf scald caused by Xanthomonas albilineans is one of the major bacterial diseases of sugarcane that threaten the sugar industry worldwide. Pathogenic divergence among strains of X. albilineans and interactions with the sugarcane host remain largely unexplored. In this study, 40 strains of X. albilineans from China were distributed into three distinct evolutionary groups based on multilocus sequence analysis and simple sequence repeats loci markers. In pathogenicity assays, the 40 strains of X. albilineans from China were divided into three pathogenicity groups (low, medium, and high). Twenty-four hours post inoculation (hpi) of leaf scald susceptible variety GT58, leaf populations of X. albilineans strain XaCN51 (high pathogenicity group) determined by qPCR were 3-fold higher than those of strain XaCN24 (low pathogenicity group). Inoculated sugarcane plants modulated the reactive oxygen species (ROS) homoeostasis by enhancing respiratory burst oxidase homolog (ScRBOH) expression and superoxide dismutase (SOD) activity and by decreasing catalase (CAT) activity, especially after infection by X. albilineans XaCN51. Furthermore, at 24 hpi, plants infected with XaCN51 maintained a lower content of endogenous salicylic acid (SA) and a lower expression level of SA-mediated genes (ScNPR3, ScTGA4, ScPR1, and ScPR5) as compared to plants infected with XaCN24. Altogether, these data revealed that the ROS production-scavenging system and activation of the SA pathway were involved in the sugarcane defense response to an attack by X. albilineans.

14.
Foods ; 10(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34945530

RESUMO

This study aimed to investigate effects of plasma-activated solution (PAS) on the cell biology of Staphylococcus aureus and qualities of fresh lettuce leaves. PAS was prepared by dielectric barrier discharge plasma and incubated with S. aureus for 10-30 min or with lettuces for 10 min. Effects on cell biology were evaluated with microscopic images, cell integrity, and chemical modification of cellular components. Effects on lettuce quality were estimated with the viable microbial counts, color, contents of vitamin C and chlorophyll, and surface integrity. PAS reduced S. aureus population by 4.95-log and resulted in increased cell membrane leakage. It also resulted in increased contents of reactive oxygen species in cells, C=O bonds in peptidoglycan, and 8-hydroxydeoxyguanosine content in cellular DNA, and reduced ratios of unsaturated/saturated fatty acids in the cell membrane. PAS treatment reduced bacterial load on fresh lettuce and had no negative effects on the quality. Data suggest that PAS can be used for the disinfection of ready-to-eat fresh vegetables.

15.
Small ; 17(51): e2105150, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34713572

RESUMO

Co-based bimetallic metal-organic frameworks (MOFs) have emerged as a kind of promising electrocatalyst for oxygen evolution reaction (OER). However, most of present works for Co-based bimetallic MOFs are still in try-and-wrong stage, while the OER performance trend and the underlying structure-function relationship remain unclear. To address this challenge, Co-based MOFs on carbon cloth (CC) (CoM MOFs/CC, M = Zn, Ni, and Cu) are prepared through a room-temperature method, and their structure and OER performance are compared systematically. Based on the results of overpotential and Tafel slope, the order of OER activity is ordered in the decreasing sequence: CoZn MOF > CoNi MOF > CoCu MOF > Co MOF. Spectroscopic studies clearly show that the better OER performance of CoM MOFs results from the higher oxidation state of Co, which is related to the choice of second metal. Theoretical calculations indicate that CoZn MOFs possess strengthened adsorption for O-containing intermediate, and lower energy barrier towards OER. This study figures out the effect of second metal on the OER performance of Co-based bimetallic MOFs and suggests that tuning the electronic structure of the metal site can be an effective strategy for other MOFs-based OER catalysts.

16.
Plant Dis ; 105(11): 3451-3458, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34142842

RESUMO

Leaf scald, a bacterial disease caused by Xanthomonas albilineans (Ashby) Dowson, is a major limiting factor for sugarcane production worldwide. Accurate identification and quantification of X. albilineans is a prerequisite for successful management of this disease. A sensitive and robust quantitative PCR (qPCR) assay was developed in this study for detection and quantification of X. albilineans using TaqMan probe and primers targeting a putative adenosine triphosphate-binding cassette (ABC) transporter gene (abc). The novel qPCR assay was highly specific to the 43 tested X. albilineans strains belonging to different pulsed-field gel electrophoresis groups. The detection thresholds were 100 copies/µl of plasmid DNA, 100 fg/µl of bacterial genomic DNA, and 100 CFU/ml of bacterial suspension prepared from pure culture. This qPCR assay was 100 times more sensitive than a conventional PCR assay. The pathogen was detected by qPCR in 75.1% (410/546) of symptomless stalk samples, whereas only 28.4% (155/546) of samples tested positive by conventional PCR. Based on qPCR data, population densities of X. albilineans in symptomless stalks of the same varieties differed between two sugarcane production areas in China, Beihai (Guangxi Province) and Zhanjiang (Guangdong Province), and no significant correlation between these populations was identified. Furthermore, no relationship was found between these populations of the pathogen in asymptomatic stalks and the resistance level of the sugarcane varieties to leaf scald. The newly developed qPCR assay proved to be highly sensitive and reliable for the detection and quantification of X. albilineans in sugarcane stalks.


Assuntos
Saccharum , Xanthomonas , China , Folhas de Planta , Reação em Cadeia da Polimerase , Xanthomonas/genética
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117999, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31935655

RESUMO

Bacillus anthracis spores have a unique biomarker of calcium dipicolinate (CaDPA). In this work, we reported a composite nanostructure for the optical sensing of DPA, with Eu (III)-doped metal-organic framework (MOF) as supporting lattice, a rhodamine-derived dye as sensing probe, respectively. By means of XRD, IR, TGA and photophysical analysis, this composite structure was carefully discussed. It was found that rhodamine absorption and emission were enhanced by DPA, while Eu emission was quenched by DPA. As a consequence, two sensing skills were observed from this composite structure, which are colorimetric sensing based on absorption spectra and ratiometric fluorescent sensing based on emission spectra. Linear sensing response was observed for both sensing channels with a warning signal at DPA concentration higher than 140 µM. Good selectivity was confirmed with a low LOD value of 0.52 µM. The sensing mechanism was revealed as the combination of emission turn-on effect triggered by DPA-released protons and emission turn-off effect originated from electron-transfer from EuBTC to DPA. This composite structure showed its advantage of naked eye detection and two sensing skills with linear response.


Assuntos
Antraz/diagnóstico , Colorimetria/métodos , Európio/química , Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Ácidos Picolínicos/análise , Rodaminas/química , Antraz/metabolismo , Antraz/microbiologia , Bacillus anthracis/isolamento & purificação , Técnicas Biossensoriais , Humanos , Espectrometria de Fluorescência
18.
Bioelectrochemistry ; 132: 107445, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31918057

RESUMO

Dielectric barrier discharge (DBD) plasma treatments are more effective against Gram negative bacteria than Gram-positive bacteria. Effects of DBD plasma were compared on Salmonella Typhimurium and Staphylococcus aureus cells. Physical cell membrane integrity and function, deoxyribonucleic acid (DNA) oxidation, and intracellular reactive oxygen species (ROS) were measured. The difference in physical damage caused by plasma on Gram-negative and Gram positive bacteria implied a difference in cellular damage pattern, which may be due to differences in cell structure and composition. Antimicrobial particles in plasma react directly with the outer membranes of Gram-negative bacteria and eventually kill them; however, ROS produced from plasma first penetrated the cell wall and membrane of Gram-positive bacteria before reacting with internal cellular components and killing the bacteria.


Assuntos
Gases em Plasma , Salmonella typhimurium/metabolismo , Staphylococcus aureus/metabolismo , Homeostase , Microscopia Eletrônica de Varredura , Espécies Reativas de Oxigênio/metabolismo
19.
Nanomaterials (Basel) ; 9(7)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323970

RESUMO

The eco-friendly vegetable liquid is increasingly used because of the growing demand for environmentally friendly dielectric liquid. A vegetable liquid/fullerene nanofluid was fabricated via ultrasonic processing with good dispersion of the fullerene nanoparticles. It was observed that a small amount of fullerene (~100 mg/L) can significantly improve the electrical properties of vegetable insulating liquid (dissipation factor decreased by 20.1%, volume resistivity increased by 23.3%, and Alternating Current (AC) dielectric breakdown strength increased by 8.6%). Meanwhile, the trace amount of fullerene is also able to improve the electrical performances (i.e., dissipation factor and electrical resistivity) of the vegetable nanofluid under harsh conditions of long-term thermal aging compared with the blank contrast. The reduced acid values (25%) and dissolved decomposition gases (58.2% for hydrogen) in the aged vegetable nanofluid indicate the inhibition of molecule decomposition of vegetable liquid with fullerene. The improved electrical performances and thermal resistance of the vegetable nanofluid contribute to the electron affinity of fullerene proved by calculation of electron density distribution on the surface. The thermogravimetric analysis of the nanofluid under different atmospheres interprets that the oxygen absorbed inevitably in the fullerene contributes to the performance deterioration of the nanofluids during the initial aging. This work provides a potential method towards eco-friendly dielectric liquid with great electrical performances for harsh environments.

20.
Phys Chem Chem Phys ; 21(21): 10947-10954, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31099364

RESUMO

Graphene is widely used in numerous scientific fields including physics, chemistry and materials science due to its exceptional electrical, thermal, optical and mechanical properties. However, the poor solubility/dispersibility strongly limits the practical applications of graphene. In this work, hydroxypropyl hydrazine (HPH) was synthesized to reduce graphene oxide (GO) under mild conditions. The as-produced graphene sheets with a 3D-porous structure show admirable dispersion stability in N,N-dimethylacetamide (DMAc) and the graphene sheets are more effective absorbents for Cu2+ removal than those reduced by hydrazine hydrate. A mechanism for removal of epoxides and carboxides from GO by HPH has been proposed. This one-step reducing and dispersing process of GO is more efficient, environmentally benign and safer for the bulk-scale production of 3D porous graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...